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EXPONENTIAL FUNCTION
We live in a world where growth has become a way of life: Our population grows by a 
small percentage each year, as does our use of energy, the amount of rice consumed, 
the area of the earth covered by asphalt and concrete, the cost of one  pan de sal, the 
national  debt  and  the  money  in  our  savings  account  (assuming  there  are  no 
withdrawals).  If  the  growth  is  steady,  these  quantities   can  be  described  by  the 
exponential function.  In this article  we examine some of the fundamental properties of 
this function and its application in Physics.

GROWTH RATE   ∆  N/  ∆  t  
Exponential  growth  (or  decay)  occurs  when  the  rate  of  change  of  a  quantity   is 
proportional  to the quantity  itself.  Suppose that you have some money in a savings 
account. The money N∆  that is added to your account  during a time t∆   depends on 
three quantities: (1) the amount N of money already in your account, (2) the interest 
rate  being  paid,  and  (3)  the  time  t∆  that  the  money  is  collecting  interest.  These 
quantities are related by the equation
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 (equation 1)

where k is a proportionality constant that depends on the interest rate being paid  and 
N t∆ ∆  is called the growth rate.

The meanings of the proportionality constant k becomes apparent when we rearrange 
the equation above:
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We see that k is the fractional change in N – that is N N∆ --per time t∆ . If the money 
in the savings account increases by 6 percent per year, then the fractional change in the 
money during the year is N N∆ =0.06  and the proportionality constant
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Note that k has dimensions of time-1.
When dealing with quantities that “grow” with time , it  is common to indicate their 
percentage growth rate P. For a money in a savings account, P = 6 percent/ yr

We relate the percentage growth rate P to k by multiplying by 100 that is

P = Percentage growth rate = 100k

THE EXPONENTIAL FUNCTION
Equation 1, can also be expressed in exponential form. Using calculus, let us derive an 
equation that can be used to calculate the value of N at some future time t if its value No 

is known at time zero. 

Rearranging equation 1:
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During an infinitesimal interval of time, dt, ∆N = dN, thus (2) can be written as
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Integrating both sides of equation (3), 
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Substituting lndN N
N

=∫  in (4),

1ln N kt C= +  (5)
In exponential form, (5) may be written as
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Substituting t = 0,
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But when the time t = 0, N = No, thus
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If k is a positive number,, exponential growth occurs. If k is a negative number ( or if a 
negative sign  appears in front  of a positive-valued k) exponential decay occurs. The 
concept  of  exponential  growth (and decay)   can be used to  describe   the  decay  of 
radioactive elements. It can also de used to describe the “decay” of the intensity level of 
sound (and radiation) with distance r.

DOUBLING TIME
Equation 6 can be used to derive a simple  expression for calculating the time needed 
for a quantity’s value to double. Rearranging  (6) and taking the natural logarithm of 
each side, we find that
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The growing quantity has a value No at time zero  and increases to a value 2 oN N=  in a 
time T, called the doubling time, given by the expression
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If we now substitute k = P/100 into the above equation, we find
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Where P is the percentage growth rate of the quantity. For example, if the world’s 
population growth rate is 1.9 percent/yr, then the population doubling time is
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If the world’s yearly energy use is increasing at a rate of 4 percent/yr,  the energy used 
per year will double in
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The units need not be years. For example, if a colony of bacteria grows at a rate of 3.5 
percent/min, then the doubling time is
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The value of an exponentially increasing quantity at some time in the future  can be 
determined using this idea of doubling time. Note, for example, that in one doubling 
time the original value No of a quantity doubles to become 2No. In the next doubling 
time, the quantity increases by another factor of 2 to become 2(2No) = 22No = 4 No. After 
a third doubling time, the quantity’s value becomes 2 (22No) = 23No= 8No. In general, in a 
time t = nT, where n is the number of doubling times, the value of a quantity increases 
to 
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where No was its original value at the start of that time period. Suppose, for example, 
that the cost of medical care increases at a rate of 14 percent. By how many would the 
cost  increase  in  20  years?  Using  eq.  (9),  we  find  that  the  doubling  time  is 
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Equation (10) can be used even if n is not an integer.

HALF LIFE 
Equations (6) and (7)  can also  be used to derive a simple  expression for calculating the 
time needed for a quantity’s value to be reduced in half. Recall that 
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The “decaying”  quantity has a value No at time zero  and reduces  to a value 
1
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in a time T1/2, called the half life, given by the expression
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We can also derive an equation that can be used to calculate the value of N at some 
future time t, given its half life T1/2. Rearranging Eq. 11
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Substituting Eq. 12 to Eq. 6, we see that
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Knowing that  ln(1/ 2) 1
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e = , the equation simplifies to
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This equation is useful in describing the decay of a radioactive substance.


